
Funded PhD subject:
Performance-portable support of complex discretizations

at extreme scale in modern C++

Advisor: Thomas Padioleau � thomas.padioleau@cea.fr (+33 (0)1 69 08 10 37
Director: Julien Bigot � julien.bigot@cea.fr (+33 (0)1 69 08 01 75

Laboratory: Maison de la Simulation (CEA Saclay, 91191 Gif-sur-Yvette Cedex)
Keywords: parallel programming models, software engineering, modern C++,

partitioned global address space, performance portability, GPU,
extreme-scale parallelism

Context
Extreme-scale simulation codes are typically developed in C or Fortran, parallelized with MPI[7] and
OpenMP[16]. This approach has proven very successful for code portability during the last decades;
but with the advent of GPU-based supercomputers, codes have to be ported to a new architecture for
which a rewrite from scratch is often required.

Lots of efforts have been devoted recently to design programming models targeting (performance)
portability between CPU and GPU including Kokkos [18], OpenACC, RAJA[4], or SYCL[17] for
example. Some also target distributed memory parallelism like Co-array Fortran[14], HPX[11], UPC[5,
6], UPC++[3], or XMP[15]. These models rely on the same abstractions that were present in previous
models: (multi-dimensional) arrays and (parallel) loops. Numerical applications then build higher-
level abstractions on top of these by taking into account the specifics of the hardware they target,
hence limiting performance portability. Many concepts also remain implicit in the code so as not to
pay a cost at execution; leading to issues with code maintainability and adaptability.

These issues can only be solved by directly providing higher-level abstractions to the numerical
simulation codes. An interesting example is offered by numpy, xarray and dask.Array in Python.
These libraries make it possible to express numerical computations in a very natural way thanks to
the abstraction of mesh and data distribution they provide and to execute it on a variety of hardware
architectures by adding just a few dedicated annotations. However, this ecosystem remains far from
offering performances comparable with Fortran + OpenMP/MPI.

Goal
The goal of this PhD thesis is to evaluate if a solution based on C++ template metaprogramming
can offer high-level (zero-cost) abstractions handling a large range of data discretization at compile
time. The work will take place in the framework of the ddc1 library and will be evaluated on the very
demanding simulation code GYSELA2[8, 12] that leverage the largest existing super computers and
manipulates multiple complex discretizations of its high-dimension data along execution. The goal is to
handle seamless replacement of discretization in code (e.g. structured uniform mesh to unstructured),
while offering the best performance from each one. Another goal is to handle parallelism at all levels:
distributed-memory parallelism similarly to PGAS languages, shared-memory parallelism on both
CPU and GPU, but also SIMD parallelism.

1https://ddc.mdls.fr
2https://gyselax.github.io/

mailto:thomas.padioleau@cea.fr
https://work.julien-bigot.fr/
mailto:julien.bigot@cea.fr
http://www.mdls.fr/
https://ddc.mdls.fr
https://gyselax.github.io/

Work-plan
During the first phase of the work, the candidate will study the related bibliography (see an extract
bellow), focusing on parallel programming models, and especially PGAS languages to get a good
understanding of the involved concepts, understand the limitations of current approaches, and seize
the benefits of existing softwares. In addition to academic publications, this first phase will be used
to discover existing work in ddc and the needs identified as part of the rewrite of the GYSELA code.

Then, the work will focus on the conception of a programming model supporting the various features
identified in the previous section. This work will start by focusing on single-node CPU and GPU
parallelism before moving to multi-node distributed parallelism. The proposed concepts will be tested
on academic cases using the usual evaluation criteria from the literature: portability, performance,
lines of code, readability, etc.

Finally, the proposed solutions will be implemented in ddc and applied to the development of the
next-generation production code GyselaX in collaboration with the team developing the code at
CEA/IRFM, Cadarache and with collaborators working on performance optimization and portability
in JAEA, Tokyo, Japan. They will be tested at scale on several supercomputers including systems
amongst the most powerful in the world (Fugaku3, Joliot-Curie4, Adastra5, ...) but also on testbeds
of new GPU accelerators in the framework of collaborations with vendors such as Intel. All results
will be submitted to international peer-reviewed conferences and journals, such as SuperComputing,
IPDPS, Cluster, JPDC, etc. for publication. The candidate will also be encouraged to participate in
the writing of a proposal to the C++ standard comittee about the solutions found.

Skills
The successful candidate will master the following skills and knowledge:

• strong interest in programming models in general and parallel programming models in particular,
• proficiency and experience with modern C++ and template metaprogramming,
• motivation for team-work in an international environment.

In addition, the following will be considered a plus:
• knowledge and experience with GPU, parallel and high-performance computing,
• interest for applied mathematics and numerical simulation,
• experience with software engineering and library design.

Existing software
The 5D non-linear gyrokinetic, semi-Lagrangian code GYSELA has been
developed at CEA/IRFM for the last 20 years to study turbulence in Toka-
mak plasmas. The kinetic model couples the six dimensional Vlasov or
Fokker-Planck equation for the distribution of particles, with Maxwell’s
equations for the electromagnetic field. Since turbulent fluctuations de-
velop at much lower frequencies than the cyclotron motion, this can be
reduced to the 5D gyrokinetic model (in addition to the time and species dimensions). Even with this
dimensionality reduction however, gyrokinetic codes requires state-of-the-art high performance com-
puting resources and GYSELA regularly use between 8 192 and 65 536 cores in parallel for multiple
weeks simulations.

While GYSELA answers current needs of physicists very well, two changes will have to be be
handled in the coming years. First, the regular toroidal mesh of GYSELA will have to be replaced
with more complex meshes in order to handle the geometries of real Tokamaks. Second, with the
arrival of Exascale, computational nodes become more and more heterogeneous often featuring GPUs.
The code will have to be ported to these new compute architecture to keep using the most powerful

3Fugaku, top 1 supercomputer in Nov 2021 https://www.top500.org/system/179807/
4Joliot-Curie french supercomputer https://www.top500.org/system/179700/
5Adastra, upcoming supercomputer in France https://www.cines.fr/en/12600/

https://www.top500.org/system/179807/
https://www.top500.org/system/179700/
https://www.cines.fr/en/12600/

super-computers in the world. Many assumptions are made in the existing code that make these
changes very complex, and a rewrite from scratch of the existing Fortran code into C++ is planned.

ddc is a C++ template meta-programming ddiscrete domain computation li-
brary developed at Maison de la Simulation. ddc supports intensive computation
over high-dimensional meshes. It provides multi-dimensional containers (based on
std::mdspan [9] proposed for inclusion in the C++ standard), and supports iterators
over geometric elements and type-safe array indexing. By giving a mesh semantic
to algorithms, ddc eases working on fields mapped on sub-meshes, and switching
between meshes; it supports writing generic mesh-independant algorithms, or optimized mesh-specific
algorithms.

While similar to (and based on top of) other C++ template meta-programming libraries such as
Kokkos or the standard library std::mdspan and the standard parallel algorithms, ddc offers a higher-
level of abstraction and supports typed indices, preventing error when manipulating many different
discrete dimensions. ddc is currently in the prototype phase and support for parallelism in the library
is a work in progress.

Laboratory and collaborations
Maison de la Simulation (MdlS – http://www.maisondelasimulation.fr/) located on the Plateau
de Saclay, is a joint laboratory of the alternative energies and atomic energy commission (CEA),
the national center for scientific research (CNRS), Paris-Saclay University, and Versailles Saint-
Quentin-en-Yvelines University. The laboratory groups activities around high performance computing
(HPC): research in computer science and applied mathematics, engineering, and development for
high-performance simulation applications. Of specific interest at MdlS are software engineering as-
pects of HPC, especially regarding separation of concerns, performance optimization and performance
portability.

The Institute for Magnetic Fusion Research (IRFM – http://irfm.cea.fr/) located at the
CEA research centre of Cadarache, is one of the 15 institutes that make up the fundamental research
division in the alternative energies and atomic energy commission (CEA). For almost 60 years, its
responsibility has been to carry out research on thermonuclear magnetically-confined fusion at the
CEA in association with the Euratom fusion programme. In Tokamaks, matter is in a hot plasma
state in interaction with a strong magnetic field, and controlling nuclear fusion requires to understand
the mechanisms that govern heat confinement. Ion temperature gradient instabilities is an important
mechanism whose understanding requires numerical simulation, this objective lead to the development
of the GYSELA code.

Japan atomic energy agency (JAEA – https://www.jaea.go.jp/english/) is Japan top nu-
clear research agency. Amongst many others, it hosts researchers interested in the development of
performance-portable simulation codes. IRFM and Maison de la Simulation have strong collaborations
ongoing regarding these aspects for the design of the new-generation GYSELA code.

Select bibliography
[1] Yuuichi Asahi, Guillaume Latu, Julien Bigot, Shinya Maeyama, Virginie Grandgirard, and Ya-

suhiro Idomura. Overlapping communications in gyrokinetic codes on accelerator-based platforms.
Concurrency and Computation: Practice and Experience, 32(5):e5551, 2020. e5551 cpe.5551.

[2] Yuuichi Asahi, Guillaume Latu, Virginie Grandgirard, and Julien Bigot. Performance portable im-
plementation of a kinetic plasma simulation mini-app. In Sandra Wienke and Sridutt Bhalachan-
dra, editors, Accelerator Programming Using Directives, pages 117–139, Cham, 2020. Springer
International Publishing.

[3] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Dan Bonachea,
Paul H. Hargrove, and Hadia Ahmed. Upc++: A high-performance communication framework

http://www.maisondelasimulation.fr/
http://irfm.cea.fr/
https://www.jaea.go.jp/english/

for asynchronous computation. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 963–973, 2019.

[4] David A. Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William Killian, Adam J.
Kunen, Olga Pearce, Peter Robinson, Brian S. Ryujin, and Thomas RW Scogland. Raja: Portable
performance for large-scale scientific applications. In 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), pages 71–81, 2019.

[5] Li Chen, Lei Liu, Shenglin Tang, Lei Huang, Zheng Jing, Shixiong Xu, Dingfei Zhang, and
Baojiang Shou. Unified Parallel C for GPU Clusters: Language Extensions and Compiler Imple-
mentation. In Keith Cooper, John Mellor-Crummey, and Vivek Sarkar, editors, Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science, pages 151–165, Berlin,
Heidelberg, 2011. Springer.

[6] UPC Consortium, Dan Bonachea, and Gary Funck. Upc language and library specifications,
version 1.3. 11 2013.

[7] Message Passing Interface Forum. MPI: A Message-passing Interface Standard, Version 3.1 ;
June 4, 2015. High-Performance Computing Center Stuttgart, University of Stuttgart, 2015.

[8] V. Grandgirard, J. Abiteboul, and J. et al. Bigot. A 5D gyrokinetic full- f global semi-Lagrangian
code for flux-driven ion turbulence simulations. Computer Physics Communications, 207:35–68,
October 2016.

[9] David S. Hollman, Bryce Adelstein Lelbach, H. Carter Edwards, Mark Hoemmen, Daniel Sun-
derland, and Christian R. Trott. mdspan in c++: A case study in the integration of performance
portable features into international language standards. In 2019 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC), pages 60–70, 2019.

[10] Dana Jacobsen, Julien Thibault, and Inanc Senocak. An MPI-CUDA Implemen-
tation for Massively Parallel Incompressible Flow Computations on Multi-GPU Clus-
ters. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition. American Institute of Aeronautics and Astronautics. _eprint:
https://arc.aiaa.org/doi/pdf/10.2514/6.2010-522.

[11] Hartmut Kaiser, Patrick Diehl, Adrian S. Lemoine, Bryce Adelstein Lelbach, Parsa Amini,
Agustín Berge, John Biddiscombe, Steven R. Brandt, Nikunj Gupta, Thomas Heller, Kevin Huck,
Zahra Khatami, Alireza Kheirkhahan, Auriane Reverdell, Shahrzad Shirzad, Mikael Simberg,
Bibek Wagle, Weile Wei, and Tianyi Zhang. Hpx - the c++ standard library for parallelism and
concurrency. Journal of Open Source Software, 5(53):2352, 2020.

[12] Guillaume Latu, Yuuichi Asahi, Julien Bigot, Tamas Feher, and Virginie Grandgirard. Scaling
and optimizing the gysela code on a cluster of many-core processors. In 2018 30th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pages
466–473, 2018.

[13] Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke Boku, and Mitsuhisa Sato. An Ex-
tension of XcalableMP PGAS Lanaguage for Multi-node GPU Clusters. In Michael Alexan-
der, Pasqua D’Ambra, Adam Belloum, George Bosilca, Mario Cannataro, Marco Danelutto,
Beniamino Di Martino, Michael Gerndt, Emmanuel Jeannot, Raymond Namyst, Jean Roman,
Stephen L. Scott, Jesper Larsson Traff, Geoffroy Vallée, and Josef Weidendorfer, editors, Euro-
Par 2011: Parallel Processing Workshops, Lecture Notes in Computer Science, pages 429–439,
Berlin, Heidelberg, 2012. Springer.

[14] John Mellor-Crummey, Laksono Adhianto, William N. Scherer, and Guohua Jin. A new vision
for coarray fortran. In Proceedings of the Third Conference on Partitioned Global Address Space
Programing Models, PGAS ’09, New York, NY, USA, 2009. Association for Computing Machinery.

[15] Masahiro Nakao, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato. Productivity and performance of
global-view programming with xcalablemp pgas language. In 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 402–409, 2012.

[16] OpenMP Architecture Review Board. OpenMP Application Programming Interface Specification
Version 5.2. Independently published, November 2021.

[17] Ruyman Reyes and Victor Lomüller. Sycl: Single-source c++ accelerator programming. In
Parallel Computing: On the Road to Exascale, pages 673–682. IOS Press, 2016.

[18] Christian R. Trott, Damien Lebrun-Grandie, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan
Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber,
Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael
Simberg, Dan Sunderland, Bruno Turcksin, and Jeremiah Wilke. Kokkos 3: Programming
model extensions for the exascale era. IEEE Transactions on Parallel and Distributed Systems,
33(4):805–817, 2022.

[19] Lei Zhou and Karl Fuerlinger. DART-CUDA: A PGAS Runtime System for Multi-GPU Systems.
In 2015 14th International Symposium on Parallel and Distributed Computing, pages 110–119,
June 2015. ISSN: 2379-5352.

