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1 Context

Very large models are now widespread and require large amount of computing power and memory
capacity. In these models, large matrix multiplications are at the heart of each layer. Two factors are
limiting inference and training for large models: (i) High memory usage and large memory footprint,
requiring possible compression of memory models, memory layout optimization and scheduling for
data movement optimization; (ii) Adaptation to the heterogeneous parallel architecture, taking into
account accelerators and requiring performance modeling and load balancing

For performance modeling and load balancing, several techniques have been proposed, taking
into account the time to move data across the nodes, either statically (see [WTL+22, WLT+21] for
instance) or at runtime (see [HBC18] for instance). For memory optimization in the context of AI,
many techniques tackle the problem of reducing the size of the matrices:

• Pruning: Unimportant model weights or connections are trimmed while preserving the model
capacity. Some recent hardware support some structure pruning, where some elements are
set to zero following some pattern restrictions, such as the Nvidia A100 GPU or the Google
TPUv4[JKL+23]. Several pruning methods have been proposed [GEH19, LWK18, ZG17],
and some pruning method consider retraining after each pruning iteration (or pruning while
training). Many of the pruning techniques are mostly for inference in the industrial level.
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• Sparsification: This is a more general approach compared to pruning, and can be applied
to any dense operator. Sparse attention matrices such as in the Big Bird model [ZGD+21]
can have different forms of sparse patterns. For models based on Mixtures of Experts, the
pyramidal reformulation of MoEs proposed by [RLY+22] is another example of sparsification.
The key for sparsification is to keep only model weights that are relevant, and it boils down
to analysing the eigenvalues of the large matrices.

• Distillation: This is essentially the reformulation of the initial pretrained model into a simpler
model (a student), through another more limited training. Distillation targets inference and
can resort to any previous compression technique, plus some dedicated compression methods.

In addition to the reduction and sparsification of the matrices, the compression format used to
represent sparse matrices has also an impact on performance, depending on the capacities of the
architecture [MHDE18]. Finally, while many techniques for model compression have been proposed
(see [TDBM22] for transformers for instance), the interactions between them is not well studied.
This corresponds to a similar situation for compilers where many optimizations were proposed,
each promising at least a 10% improvement but the gain obtained after combining optimization
never correspond to the addition of the individual gains. Therefore the question “how to go be-
yond individual optimizations that only work for particular cases?”. To find the most appropriate
sequence of optimizations, this led to languages where the user defined its sequence of optimization
(metaprogramming such as Halide, TVM for instance), to the polyhedral framework unifying many
transformations, to cost analysis (bridging models like [LH11]), to auto-tuning and to AI-guided
optimizations. As far as parallelism and memory optimization are concerned, this has not been
studied in the context of model compression.

2 Objectives of the PhD

The objectives of the PhD are to propose a framework to capture many different memory optimiza-
tion techniques and a methodology to guide the optimization process on large models. The main
focus will be on transformer-based models, corresponding to large models for generative AI.

This research project can be decomposed into 3 steps:

• Propose a high-level formulation of the targeted models in order to allow a class of opti-
mizations. The optimizations that will be considered are relative to sparsification, memory
optimizations, including some algebraic rewriting of the model (for instance fusion). This
would correspond to the main contribution of the PhD. As a first idea, it may be possible
to consider matrices of operators (or lambda functions) where in the matrix product, the
multiplication would be replaced by the application of a function. This would allow the rep-
resentation of softmax, relu operators as matrix ones. Then techniques based on sparsification
could be explored more systematically (following [PLE22] ideas). The possible composition of
different optimizations expressed through this formulation is a key objective. A combination
of the optimizations according to the unite and conquer approach [EP16] can bring a solution
to this objective.

• The automatic exploration of some of these compositions, taking into account the specificities
of the optimization in terms of memory and hardware acceleration (ratio of vector/matrix
operators, constraints on memory layout, ...). The hardware is in general dedicated to run
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particular models in mind [JKL+23, LTXZ19], reformulating the model by compressing it is
also a way to find a model that better fit the architecture. Semantic-based performance and
memory prediction would enhance solutions be portable and systematical.

• Evaluation of large models such as BERT, GPT, LLaMA or Pangu with two metrics in mind:
performance and memory consumption. Several models will be evaluated, with the transfor-
mations proposed, along the PhD. A performance model will be first designed to evaluate the
amount of computation and memory gains after optimization. The generation of an optimized
low-level code for different architectures is not part of this PhD and will reuse existing works.
The effective implementation of targeted large models on high-performance architectures is
a delicate task requiring a mastery of these architectures and the associated multi-level pro-
gramming models. However, this efficient exploitation can be facilitated by programming and
execution environments for parallel and/or large-scale distributed systems such as the YML
software platform (yml.prism.uvsq.fr) [Del08]. YML is a solution for high-level heterogeneous
programming implementations, integrating asynchronous communications, in this thesis.

3 Research Work plan

The program below can be rolled out according to the following schedule:

• 1st year:

– Bibliography on parallel programming and performance analysis, numerical compression
methods, large neural network models, new parallel and/or distributed architectures,
hardware accelerators and parallel architectures dedicated to artificial intelligence.

– Study and evaluation of algorithms of parallel computing and of eigenvalue analysis.

– Prepare very large datasets and experiments on clusters of accelerators.

– Identify and analyze limitations of the state of the art.

• 2nd year:

– Create high-level models for performance analysis.

– Design and develop methods and algorithms of performance and memory footprint op-
timization.

– Experiment and evaluate the proposals on clusters of accelerators or on cloud.

– Publication of the results obtained.

• 3rd year

– Propose and develop parallel evolution on the second year’s results.

– Validate the methodological and computational results by experimentation on industrial
case studies.

– Publication of the results obtained.

– Defense of the thesis.
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4 How to apply

Please send your candidature (CV, cover letter, school transcripts, recommendation letters, and
possibly a school project or internship report) to Prof. Nahid Emad (nahid.emad@uvsq.fr), Dr.
Chong Li (ch.l@huawei.com) and Prof. Denis Barthou (denis.barthou@huawei.com).
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