
Python Data Processing on
Supercomputers for Large Parallel
Numerical Simulations.

Context
The field of high-performance computing has reached a new milestone, with the world's most
powerful supercomputers exceeding the exaflop threshold. These machines will make it
possible to process unprecedented quantities of data, which can be used to simulate
complex phenomena with superior precision in a wide range of application fields:
astrophysics, particle physics, healthcare, genomics, etc. In France, the installation of the
first exaflop-scale supercomputer is scheduled for 2025. Leading members of the French
scientific community in the field of high-performance computing (HPC) have joined forces
within the PEPR NumPEx program (https://numpex.irisa.fr) to carry out research aimed at
contributing to the design and implementation of the machine's software infrastructure. As
part of this program, the Exa-DoST project focuses on data management challenges. This
thesis will take place within this framework.

Without a significant change in practices, the increased computing capacity of the next
generation of computers will lead to an explosion in the volume of data produced by
numerical simulations. Managing this data, from production to analysis, is a major challenge.

The use of simulation results is based on a well-established calculation-storage-calculation
protocol. The difference in capacity between computers and file systems makes it inevitable
that the latter will be clogged. For instance, the Gysela code in production mode can
produce up to 5TB of data per iteration. It is obvious that storing 5TB of data is not feasible
at high frequency. What's more, loading this quantity of data for later analysis and
visualization is also a difficult task. To bypass this difficulty, we choose to rely on the in-situ
data analysis approach.

In situ consists of coupling the parallel simulation code, Gysela, for instance, with a data
analytics code that processes the data online as soon as they are produced. In situ enables
reducing the amount of data to write to disk, limiting the pressure on the file system. This is
a mandatory approach to run massive simulations like Gysela on the latest Exascale
supercomputers.

We developed an in situ data processing approach called Deisa, relying on Dask, a Python
environment for distributed tasks. Dask defines tasks that are executed asynchronously on
workers once their input data are available. The user defines a graph of tasks to be
executed. This graph is then forwarded to the Dask scheduler. The scheduler is in charge of
(1) optimizing the task graph and (2) distributing the tasks for execution to the different
workers according to a scheduling algorithm aiming at minimizing the graph execution time.

Deisa extends Dask, so it becomes possible to couple an MPI-based parallel simulation
code with Dask. Deisa enables the simulation code to directly send newly produced data into
the worker memories, notify the Dask scheduler that these data are available for analysis,
and that associated tasks can then be scheduled for execution.



Compared to previous in situ approaches that are mainly MPI-based, our approach relying
on Python tasks makes for a good tradeoff between programming ease and runtime
performance.

The goal of this PhD work is to investigate solutions to:

● Improve task placement and thus performance enabling tasks to be scheduled in
process (into the simulation processes), in situ (running on external processes but on
the same compute nodes that also run the simulation code), and in transit (on
dedicated nodes different from the simulation nodes). Running closer to the
simulation reduces the need for data movements but can potentially steal resources
(CPU, GPU, network, memory, cache) from the simulation and slow it down. Dask
task graph optimization is a good starting point to develop such approaches.

● Enable more diverse and flexible data processing patterns for Dask in situ:
○ data processing tasks are triggered when detecting some specific events in

the data;
○ changes to some simulation internal parameters during runtime as a result of

certain analytics tasks.
○ enabling task graphs combining classical analytics with deep neural

networks-based analysis.

Problematic
When discussing in-situ data analysis, two primary techniques are often highlighted:
in-transit analysis and in-process analysis.

In-transit analysis involves examining data while it is being transferred between systems or
across various components of a distributed architecture. For instance, in large-scale
simulations or scientific experiments, data is typically generated on one system (such as a
supercomputer) and needs to be sent to another system for storage or further analysis.
Rather than waiting for the data to reach its final destination, in-transit analysis allows for
computations to be performed on the data as it moves. This approach significantly reduces
overall processing time.



In contrast, in-process analysis entails analyzing data during its generation or processing by
the application. Instead of waiting for an entire simulation or data generation task to finish,
this technique enables concurrent processing of data throughout the ongoing task, such as
during simulation steps in a scientific application. By doing so, the burden of post-processing
is alleviated, as computational tasks are distributed over time.

To illustrate these techniques, consider the Gysela code. Our goal is to integrate both
in-transit and in-process analyses to enhance data analytics while minimizing data transfer
between systems. A common diagnostic performed on Gysela data is the global aggregation
of certain fields across the entire domain. This global operation can be divided into a
subdomain reduction followed by a reduced global reduction. By executing the initial
reduction directly on the process where the data is generated, we can significantly decrease
the volume of data transferred. This, in turn, alleviates the load on the parallel file system.

However, determining which reductions should be performed on specific resources presents
a challenge, especially since we often lack prior knowledge about the types of diagnostics
that will be required. This highlights the concept of co-scheduling. In this context,
co-scheduling refers to the coordinated execution of in-transit and in-process data analysis
tasks to optimize resource efficiency and minimize data movement latency. By aligning the
scheduling of these two processes, the system can ensure more effective utilization of
resources, such as network bandwidth, CPU, and memory. This approach is particularly vital
for large-scale applications, where traditional methods of moving and analyzing massive
datasets can lead to significant bottlenecks.

Mission

The candidate will begin the thesis by conducting a comprehensive study of the
state-of-the-art in relevant areas, focusing on in-situ, in-transit, and in-process data analysis.
Early on, they will gain proficiency in using PDI Deisa and familiarize themselves with the
Gysela code.

To dive into the core subject of the thesis, the candidate will examine how to separate local
data reduction from the overall workflow. They will analyze the task graph generated by
Dask, the underlying library of Deisa, and conduct a static analysis to determine which tasks
should be executed in-process. Applying graph theory will be crucial in this stage to identify
the appropriate tasks.

Once the local tasks are defined, the candidate will implement routines within the PDI Deisa
plugin to handle these local operations in the same process as the simulation. In the final
phase, they will expose the locally reduced data to Deisa's dedicated I/O processes using
remote procedure calls, facilitating the aggregation of data for final reduction.

Additionally, the candidate will investigate solutions to automate the above processes,
ensuring that compute resources are efficiently scheduled based on the workload. The
ultimate goal will be to optimize the entire workflow, improving performance and resource
management.

Main activities
The candidate will undertake the thesis work by thoroughly studying existing research and
developing innovative solutions to efficiently manage the integration of in-transit and
in-process data analysis. This research will address critical challenges in optimizing data



workflows, and the novel solutions devised are expected to significantly enhance
performance in large-scale computing environments. The outcomes of this work will be
submitted for publication in top-tier journals and presented at prestigious conferences within
the high-performance computing (HPC) community.

As part of the Exa-DoST project within the NumPEx PEPR initiative, the candidate will have
privileged access to cutting-edge, large-scale computing infrastructure, enabling robust
experimentation and testing. The framework developed will be rigorously evaluated on
large-scale applications in close collaboration with renowned research entities such as
CEA/DAM and/or CEA/DES. These collaborations will provide the candidate with
opportunities to work on real-world HPC challenges at the frontier of scientific research.

The candidate will be based at Maison de la Simulation, working closely with interdisciplinary
teams of experts in HPC and advanced simulation from Inria Grenoble, ensuring a dynamic
and supportive research environment. This collaborative setting will foster innovation and
ensure that the research contributes to the state of the art in both academic and industrial
contexts.

Technical skills
● An excellent Master's degree in computer science or equivalent
● Strong knowledge of distributed systems
● Knowledge of storage and (distributed) file systems
● Ability and motivation to conduct high-quality research, including publishing the

results in relevant reviews
● Strong programming skills (Python, C/C++)
● Working experience in the areas of HPC and Big Data management is an advantage
● Very good communication skills in oral and written English
● Open-mindedness, strong integration skills, and team spirit

Benefits
● Subsidized meals
● Up to 75% reimbursed public transport
● Possibility of teleworking and flexible working hours
● Professional equipment available (videoconferencing, loan of computer equipment,

etc.)
● Social, cultural, and sports benefits
● Access to professional training
● Social security
● Up to 9 weeks of paid leave

References
1. Dask - https://www.dask.org/
2. Deisa Paper: Dask-enabled in situ analytics. Amal Gueroudji, Julien Bigot, Bruno

Raffin. Hipc 2021. https://hal.inria.fr/hal-03509198v1

https://www.dask.org/
https://hal.inria.fr/hal-03509198v1


3. Deisa Paper: Dask-Extended External Tasks for HPC/ML In Transit Workflows, Amal
Gueroudji, Julien Bigot, Bruno Raffin, Robert Ross. Work workshop at
Supercomputing 23. https://hal.science/hal-04409157v1

4. Deisa Code: https://github.com/pdidev/deisa
5. Ray - https://github.com/ray-project/ray
6. Damaris: How to Efficiently Leverage Multicore Parallelism to Achieve Scalable,

Jitter-free I/O. Matthieu Dorier , Gabriel Antoniu , Franck Cappello, Marc Snir , Leigh
Orf. IEEE Cluster 2012. https://inria.hal.science/hal-00715252

Annexe

https://hal.science/hal-04409157v1
https://github.com/pdidev/deisa
https://github.com/ray-project/ray
https://inria.hal.science/hal-00715252

