Categories
cdd highlight job

[JOB] HPC Engineer Position at CEA 👩‍💻🧑‍💻- Contribution to the development of a genomic code on GPU for the GenEx project

Join the CEA’s ambitious GenEx project and contribute to the development of a genomic computing library adapted to GPU and exascale systems. We are recruiting an HPC engineer for a period of 1 year (renewable for a second year) to work at our CEA Saclay site near Paris.

To apply, please send your application (resume and cover letter) to edouard.audit@cea.fr. You can use this same address for any questions concerning the offer. Applications will be evaluated from mid-September until the position is filled.

Context

The objective of GenEx is to develop, through a collaboration between the Joliot Institute and the Maison de la Simulation (MdlS), an innovative, versatile, and highly efficient code to interpret genomics experiments, initially focusing on DNA repair mechanisms that are the subject of many experiments at Joliot. This requires very intensive computations, making it essential to have a code capable of fully utilizing the computational power of exascale architectures.

The collaboration between Joliot and MdS will combine top-level expertise in computer sciences and genomics. Thus, GenEx will implement a tool that will represent a significant advancement over existing tools. Traditional algorithms handling this type of problem are based on Monte-Carlo methods involving conditional events for each agent involved in the process. This approach is particularly unsuitable for GPU-type architectures. Therefore, a new algorithmic approach has been conceived. This approach handles agent interactions in batches, enabling highly efficient GPU code.

The recruited engineer will be co-supervised by MdS and Joliot to implement this new approach. To achieve a portable, efficient code that fully exploits GPUs, the core of the code will be developed using the Kokkos library, for which there is strong expertise at MdS and within the CExA project. Subsequently, a Python interface will be established to make the code easily usable by the community of biologists/bioinformaticians/biophysicists, knowing that ultimately GenEx could interest many teams in various fields of application.

The initial applications will focus on yeast, whose genome contains 6k genes each with 300 to 3k base pairs. To interpret experimental results, it is necessary to simulate several million experiments for each gene with a model having about ten free parameters (>100Mh with current methods). One of the long-term objectives will be to conduct a similar study on the human genome (20k genes with 300 to 3M base pairs) on the Exascale machine soon to arrive at CEA. PTC funding is essential to initiate the implementation of the code, and the significant results thus obtained will have a substantial leveraging effect for further development.

Mission

As part of the GenEx team you will be responsible to develop and test the new software in collaboration with experts of genomics at Joliot and of computer science at MdS.

Your mission will include:

  • Discussions and set-up of the physical models to modelise DNA repairs
  • Test of various algorithms to solve these models
  • Development of an highly efficient code, based on Kokkos, to implement the previous

Skills

You have a master and/or an engineering degree in computer science and:

  • You have a good knowledge of C++.
  • You have skills in software engineering. You are familiar with common development environments and associated tools.
  • Knowledge of parallel programming (GPU, multi-threaded, etc.) is a plus, especially with the Kokkos library or equivalent.
  • You are autonomous and you wish to be part of an interdisciplinary work team.

Salary and benefits

The CEA offers salaries based on your degrees and experience. This position offers several advantages:

  • Numerous opportunities to travel internationally (exchanges, conferences, workshops and more).
  • Up to 3 days of telecommuting per week.
  • Reimbursement of up to 75% of public transport cards and a free transport network throughout the Ile-de-France region.
  • An interesting complementary health insurance and several company savings plans.
  • 9 weeks of paid vacation per year.
Categories
cdd highlight job

[JOB] Engineer Position 👩‍💻🧑‍💻- HPC packaging Expert

Overview

We are looking for a candidate with a Master’s degree, Engineer’s degree or PhD in computer science, junior or senior, to join a team responsible for the packaging, deployment, and testing of supercomputing libraries for supercomputers.

The position is located at Maison de la Simulation team (https://mdls.fr), in Saclay (near Paris), but our team is distributed in the following other locations:

  • Inria Datamove team (https://team.inria.fr/datamove), located near Grenoble, in the French Alps
  • Inria SED team (https://sed-bso.gitlabpages.inria.fr), located near Bordeaux, close to the Atlantic Ocean

This work is part of the NumPEx project (http://www.numpex.fr) which is endowed with more than 40 million euros over 6 years, starting from 2023. This project aims to build a software stack for Exascale supercomputers related to the arrival in Europe of the first Exascale machine. The French supercomputer is expected for 2025. These machines will be among the most powerful in the world (https://top500.org), used for traditional scientific applications and artificial intelligence workloads. Our role in NumPEx is to design and implement an innovative packaging, deployment and testing strategy. Commonly used solutions show their limits in front of the complexity of supercomputers and applications, as well as the need for reproducibility for open science. Our goal is to build a solution based on a new generation of promising packaging tools: Guix, Nix, Spack, …

  • Contact: Benoît Martin (bmartin@cea.fr) & Bruno Raffin (bruno.raffin@inria.fr)
  • Duration: 3 years
  • Start date: ASAP

Assignment

You will contribute to the design and implementation of the packaging and continuous integration strategy. You will participate in the deployment and testing of the infrastructure. Furthermore, you will also participate with user support and training activities around all these aspects. Our packaging strategy is centered on the open source tools Guix (https://hpc.guix.info), Nix (https://nixos.org) and Spack (https://spack.io). In direct contact with the development teams of these tools, with the supercomputer administration teams, and with our foreign counterparts (European, Japanese, American, etc.), you will participate in:

  1. the design of the packaging strategy of the NumPEx project
  2. the effort of packaging these libraries with the proposed tools
  3. the design of a package test and validation solution taking into account the specificities of supercomputers
  4. the development of a solution allowing non-administrator users to deploy NumPEx libraries on supercomputers
  5. training around all of these aspects for researchers and engineers

Skills

Master’s degree, Engineer’s degree or PhD, beginner or confirmed (salary adjusted according to experience) in computer science.

The essential expected skills are:

  • Good practice of Unix/Linux system and system administration
  • Good programming experience (C/C++, Python)
  • Experience with software compilation and installation chains, version management tools, testing and continuous integration (CMake, Git, GitHub, GitLab, …)
  • The work being performed in an international context, a good practice of technical English (written and oral) is expected (proficiency in French is not compulsory), as is a taste for team work.

Any additional skill related to package managers (Guix, Nix, Spack, apt, rpm, pip, …), containers (Singularity/Apptainer, Docker, …) or open source development are a plus. An initial training time will be provided to complement the missing skills. You will integrate an academic research environment which will give you, throughout your contract, the opportunity to complete your training on cutting-edge technologies.

Application

To apply, please send the following elements to Benoît Martin and Bruno Raffin:

  • a curriculum vitae
  • a motivation letter
  • references from people we can contact to certify your qualities
  • a recent internship or thesis report
  • links to software contributions

Salary and benefits

The CEA offers salaries based on your degrees and experience. This position provides several advantages:

  • The possibility of joining collaborations with other European laboratories, the United States, and Japan
  • Numerous opportunities to travel internationally (exchanges, conferences, workshops and more)
  • 5 weeks of paid vacation and 4 weeks of RTT per year, and up to 2 days of remote work per week.
  • Reimbursement of up to 75% of public transport cards and a free transport network throughout the Ile-de-France region
  • Complimentary health insurance and several company savings plans
Categories
highlight job

[JOB] PhD. 👩‍💻🧑‍💻 – Multigrid algorithms tuning using AI for the solution of linear systems

Etablissement : Université Paris-Saclay GS Ingormatique et sciences du numérique
École doctorale : Sciences et Technologies de l’nformation et de la Communication
Spécialité : Informatique mathématique
Unité de recherche : Mdls – Maison de la Simulation

Encadrement de la thèse : Nahid EMAD PETITON
Co-Directeur : Thomas DUFAUD

Description de la problématique de recherche – Project description

La performance des simulateurs a un impact direct à la fois sur la qualité des résultats de simulation, avec la précision souhaitée et sur la capacité d’explorer une grande variété d’hypothèses scientifiques. Dans un grand nombre de simulateurs numériques, la résolution de systèmes linéaires, très souvent mal conditionnés, constitue l’étape la plus consommatrice en temps de calcul (jusqu’à 80% de la simulation).

Les méthodes multigrilles font partie des solveurs et des préconditionneurs efficaces et puissants pour la résolution de grands systèmes linéaires mal conditionnés. Cependant, le paramétrage optimal de ces méthodes ; tels que l’algorithme de lissage, les schémas de correction, le choix des opérateurs de restriction dépend du problème à traiter et oriente fortement l’efficacité numérique de cette famille de méthodes. De plus, il existe plusieurs algorithmes multigrilles, comprenant différents algorithmes de lissage tels que Jacobi et Gauss- Seidel, différents schémas de correction tels que V-Cycle, W-Cycle et différents opérateurs de prolongation/restriction. Le choix des différents algorithmes et le réglage fin de ces paramètres améliore le taux de convergence de cette famille de méthode et influence le temps de calcul sur l’architecture cible type CPU, GPU ou TPU. L’expertise de l’utilisateur dans la sélection des paramètres est critique pour une utilisation optimale de ces méthodes.

En partant de ce constat, l’objectif du travail de recherche proposé est de concevoir et d’utiliser des techniques d’apprentissage afin de trouver pour la méthode multigrille algébrique de meilleurs paramétrages à la fois pour les problèmes linéaires et non linéaires à 2-3 dimensions. Les études ciblées seront issues de deux grandes catégories de simulations : la dynamique des fluides et l’écoulement en milieu poreux. Parmi les applications sélectionnées, nous pouvons évoquer les modélisations Fluide-particules, Géomécanique, et séquestration du Co2, avec pour chacune des systèmes différents à résoudre.

Simulator performance has a direct impact both on the quality of simulation results, with the desired accuracy, and on the ability to explore a wide variety of scientific hypotheses. In a large number of numerical simulators, the resolution of linear systems, which are very often poorly conditioned, is the most time-consuming stage of the process (up to 80% of the simulation).
Multigrid methods are among the most efficient and powerful solvers and preconditioners for solving large, ill-conditioned linear systems. However, the optimal parameterization of these methods, such as the smoothing algorithm, the correction schemes and the choice of restriction operators, depends on the problem to be solved and strongly influences the numerical efficiency of this family of methods. In addition, there are several multigrid algorithms, including different smoothing algorithms such as Jacobi and Gauss-Seidel, different correction schemes such as V-Cycle, W-Cycle and different extension/restriction operators. The choice of different algorithms and the fine-tuning of these parameters improves the convergence rate of this family of methods and influences the computation time on the target CPU, GPU or TPU architecture. User expertise in parameter selection is critical for optimal use of these methods.
With this in mind, the aim of the proposed research work is to design and use learning techniques to find better parameterizations for the algebraic multigrid method, for both linear and non-linear 2-3-dimensional problems. The targeted studies will be drawn from two broad categories of simulations: fluid dynamics and porous media flow. Selected applications include fluid-particle modeling, geomechanics and Co2 sequestration, each with different systems to solve.

Context

La simulation numérique est un outil complémentaire aux études expérimentales permettant de comprendre finement les phénomènes physiques complexes. C’est aussi une aide importante pour la mise au point et l’évaluation de solutions techniques innovantes et prospectives. Elle est ainsi au cœur de nombreux domaines tels que la mécanique des fluides, la conception de matériaux ou les géosciences.

Dans un grand nombre de simulateurs numériques, la résolution de systèmes linéaires, très souvent mal conditionnés, constitue l’étape la plus consommatrice en temps de calcul (jusqu’à 80% de la simulation). Les préconditionneurs employés voient leurs performances variées en fonction des paramètres choisis. L’expertise de l’utilisateur dans la sélection des paramètres est ainsi nécessaire pour une utilisation optimale de ces méthodes.

Dans ce projet, nous nous intéressons aux systèmes linéaires issus de la discrétisation d’un problème de poisson à coefficients variables. Ce problème est au cœur de nombreuses méthodes numériques pour la simulation d’écoulements de type Darcy ou Navier-Stockes. Les méthodes multigrilles algébriques (AMG) sont parmi les plus efficaces pour résoudre les systèmes linéaires associés à la discrétisation de cette équation sur des maillages non structurés. Ces méthodes emploient des opérateurs de “smoothing” pour réduire les composantes à haute fréquence de l’erreur, des opérateurs de restriction pour projeter le problème sur des grilles grossières et enfin des opérateurs de prolongation pour revenir sur les tailles de grilles fines initiales. Chacune de ces étapes, ainsi que leur ordonnancement en cycles, dispose de nombreux paramètres à sélectionner (type de smoother et nombre d’itérations, choix des opérateurs de restriction et prolongation pour tenir compte de la variabilité des coefficients de l’équation, ou encore agencement des cycles multigrilles) (Briggs et al.). Le paramétrage optimal de ces méthodes dépend fortement du problème physique modélisé et représente une difficulté importante dans leur adoption.

Il est ainsi nécessaire de développer des méthodes d’apprentissage permettant d’accélérer la convergence des méthodes multigrilles, soit en obtenant un paramétrage optimal de méthodes existantes, soit en imitant directement les méthodes existantes. De nombreux travaux récents se sont engagés dans ces deux voies :
– Opérateurs de projection : (Katrutsa et al.) et (Greenfeld et al.) proposent des méthodes d’apprentissage non supervisées pour optimiser le paramétrage des opérateurs de prolongation et restriction des méthodes multigrilles géométriques (GMG) à deux niveaux avec une fonction coût permettant de minimiser le rayon spectral de la matrice d’itération. (Luz et al.) étendent ces travaux à des méthodes AMG en utilisant des Graph Neural Networks (GNN) pour gérer les maillages non structurés.

– Smoother : (Hsieh et al.) proposent une méthode d’apprentissage supervisée basée sur des Convolutional Neural Networks (CNN) et l’architecture U-Net afin d’apprendre une correction à l’algorithme de Jacobi tout en conservant les garanties de convergence. (Huang et al.) étendent ces travaux à l’optimisation du smoother de Jacobi dans les méthodes GMG.
Ces travaux s’appuient notamment sur le parallèle développé par (He et al.) entre les méthodes multi-grilles et les réseaux de convolution. En effet, le passage d’une grille grossière à une grille fine (et inversement) peut être vu comme une étape de filtrage d’un CNN.

Les résultats observés montrent une accélération d’un facteur 2 à 10 de la convergence des algorithmes existants tout en conservant d’excellentes propriétés de généralisation. Cependant, ces travaux sont limités à des étapes spécifiques des méthodes multigrilles et ont pour cible principale les méthodes GMG, restreignant leur utilisation aux maillages structurés sur des problèmes simplifiés.
L’objectif principal de ce travail de thèse est de développer des méthodes d’apprentissage pour la résolution des systèmes linéaires préconditionnés issus de la discrétisation sur maillages non structurés du problème de Poisson à coefficients variables. Ces méthodes doivent permettre d’accélérer la convergence des algorithmes multigrilles sur des architectures matérielles hétérogènes.

La simulation numérique est un outil complémentaire aux études expérimentales permettant de comprendre finement les phénomènes physiques complexes. C’est aussi une aide importante pour la mise au point et l’évaluation de solutions techniques innovantes et prospectives. Elle est ainsi au cœur de nombreux domaines tels que la mécanique des fluides, la conception de matériaux ou les géosciences.

Dans un grand nombre de simulateurs numériques, la résolution de systèmes linéaires, très souvent mal conditionnés, constitue l’étape la plus consommatrice en temps de calcul (jusqu’à 80% de la simulation). Les préconditionneurs employés voient leurs performances variées en fonction des paramètres choisis. L’expertise de l’utilisateur dans la sélection des paramètres est ainsi nécessaire pour une utilisation optimale de ces méthodes.

Dans ce projet, nous nous intéressons aux systèmes linéaires issus de la discrétisation d’un problème de poisson à coefficients variables. Ce problème est au cœur de nombreuses méthodes numériques pour la simulation d’écoulements de type Darcy ou Navier-Stockes. Les méthodes multigrilles algébriques (AMG) sont parmi les plus efficaces pour résoudre les systèmes linéaires associés à la discrétisation de cette équation sur des maillages non structurés. Ces méthodes emploient des opérateurs de “smoothing” pour réduire les composantes à haute fréquence de l’erreur, des opérateurs de restriction pour projeter le problème sur des grilles grossières et enfin des opérateurs de prolongation pour revenir sur les tailles de grilles fines initiales. Chacune de ces étapes, ainsi que leur ordonnancement en cycles, dispose de nombreux paramètres à sélectionner (type de smoother et nombre d’itérations, choix des opérateurs de restriction et prolongation pour tenir compte de la variabilité des coefficients de l’équation, ou encore agencement des cycles multigrilles) (Briggs et al.). Le paramétrage optimal de ces méthodes dépend fortement du problème physique modélisé et représente une difficulté importante dans leur adoption.

Il est ainsi nécessaire de développer des méthodes d’apprentissage permettant d’accélérer la convergence des méthodes multigrilles, soit en obtenant un paramétrage optimal de méthodes existantes, soit en imitant directement les méthodes existantes. De nombreux travaux récents se sont engagés dans ces deux voies :
– Opérateurs de projection : (Katrutsa et al.) et (Greenfeld et al.) proposent des méthodes d’apprentissage non supervisées pour optimiser le paramétrage des opérateurs de prolongation et restriction des méthodes multigrilles géométriques (GMG) à deux niveaux avec une fonction coût permettant de minimiser le rayon spectral de la matrice d’itération. (Luz et al.) étendent ces travaux à des méthodes AMG en utilisant des Graph Neural Networks (GNN) pour gérer les maillages non structurés.

– Smoother : (Hsieh et al.) proposent une méthode d’apprentissage supervisée basée sur des Convolutional Neural Networks (CNN) et l’architecture U-Net afin d’apprendre une correction à l’algorithme de Jacobi tout en conservant les garanties de convergence. (Huang et al.) étendent ces travaux à l’optimisation du smoother de Jacobi dans les méthodes GMG.
Ces travaux s’appuient notamment sur le parallèle développé par (He et al.) entre les méthodes multi-grilles et les réseaux de convolution. En effet, le passage d’une grille grossière à une grille fine (et inversement) peut être vu comme une étape de filtrage d’un CNN.

Les résultats observés montrent une accélération d’un facteur 2 à 10 de la convergence des algorithmes existants tout en conservant d’excellentes propriétés de généralisation. Cependant, ces travaux sont limités à des étapes spécifiques des méthodes multigrilles et ont pour cible principale les méthodes GMG, restreignant leur utilisation aux maillages structurés sur des problèmes simplifiés.

L’objectif principal de ce travail de thèse est de développer des méthodes d’apprentissage pour la résolution des systèmes linéaires préconditionnés issus de la discrétisation sur maillages non structurés du problème de Poisson à coefficients variables. Ces méthodes doivent permettre d’accélérer la convergence des algorithmes multigrilles sur des architectures matérielles hétérogènes.
Références :

(Briggs et al.) William Briggs, Van Henson and Steve McCormick. A Multigrid Tutorial, 2nd Edition, SIAM, (2000) ISBN: 9780898714623. (Huang et al.) Ru Huang, Ruipeng Li and Yuanzhe Xi. Learning optimal multigrid smoothers via neural networks, (2021) arXiv:2102.1207v1 (Katrutsa et al.) Alexandr Katrutsa, Talgat Daulbaev and Ivan Oseledets. Deep Multigrid: learning prolongation and restriction matrices, (2017) arXiv:1711.03825v1.

(He et al.) Juncai He and Jinchao Xu. MgNet: A unified framework of multigrid and convolutional neural network. Sci. China Math. (2019). https://doi.org/10.1007/s11425-019-9547-2
(Hsieh et al.) Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella and Stefano Ermon. Learning Neural PDE Solvers with Convergence Guarantees (2019). arXiv:1906.01200v1

(Greenfeld et al.) Daniel Greenfeld, Meirav Galun, Ron Kimmel, Irad Yavneh and Ronen Basri. Learning to Optimize Multigrid PDE Solvers. ICML (2019). arXiv:1902.10248
(Luz et al.) Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri and Irad Yavneh. Learning Algebraic Multigrid Using Graph Neural Networks (2020). arXiv:2003.05744

Objectifs

L’objectif principal de ce travail de thèse est de développer des méthodes d’apprentissage pour la résolution des systèmes linéaires préconditionnés issus de la discrétisation sur maillages non structurés du problème de Poisson à coefficients variables. Ces méthodes doivent permettre d’accélérer la convergence des algorithmes multigrille sur des architectures matérielles hétérogènes.

Méthode

Afin de répondre à l’objectif fixé, nous proposons un plan de travail en 4 étapes :
– Etat de l’art des méthodes multigrilles améliorée par l’IA : Il s’agit dans un premier temps de faire un inventaire des méthodes d’accélération de chaque étape des algorithmes multigrilles. Il faudra évaluer leur impact en analysant les taux de convergence et le rayon spectral des opérateurs de transfert d’erreur résultants. Les travaux porteront d’abord sur des maillages structurés (réseau CNN) puis sur des maillages non structurés (réseau GNN)
– Conception d’un solveur linéaire multigrille hybride par composant : Sur la base des travaux précédents, il s’agira ensuite de proposer un choix de méthode d’apprentissage pour accélérer chaque étape du solveur multigrille (smoother, opérateurs de projection, niveaux de grille et type de cycle). Ces méthodes seront entraînées de manière indépendante puis assemblées lors de l’évaluation du modèle.
– Conception d’un solveur linéaire multigrille global : L’optimisation de chaque paramètre n’est pas complètement indépendante des autres composantes: une fois l’approche par bloc établie, on cherchera à enchaîner directement les étapes du solveur multigrille hybride dans un entraînement global.
– Développement d’un framework général de solveur linéaire hybride : Les méthodes de préconditionnement construites à partir des méthodes de déflation, de décomposition de domaine ou multigrille ont des équivalences (Tang et al., DOI:10.1007/s10915-009-9272-6). L’objectif sera d’adapter les méthodologies développées précédemment pour accélérer ces divers types de méthodes.
L’efficacité des méthodes développées sera évaluée sur des applications industrielles telles que les modélisations des interactions Fluide-particules, la Géomécanique, ou la séquestration du Co2, avec chacune des systèmes linéaires à résoudre ayant des caractéristiques différentes.
Nous évaluons la généralisation de ces méthodes sur un ensemble de paramètres de simulation variables : problème physique sous- jacent, géométrie du domaine, conditions aux bord ou encore taille initiale de la grille.

Résultats attendus – Expected results

La première cible de la thèse est l’élaboration et la validation de la solution proposée. Ces composants logiciels seront dans un premier temps intégrés dans une bibliothèque écrite dans des frameworks spécifiques (Tensorflow, Pytorch, JAX) permettant de bénéficier directement d’une performance optimisée sur les architectures matérielles de type CPU, GPU voire TPU.
Cette solution pourra également être interfacée dans les bibliothèques telles que Trilinos et AMGX ce qui nous permettra d’avoir des solutions performantes de référence à la fois sur CPU et GPU. Son efficacité et sa portabilité seront ensuite évaluées dans les simulations de la dynamique des fluides et l’écoulement en milieu poreux.

Categories
Non classé

[JOB] Postdoc at CEA Saclay 👩‍💻🧑‍💻- Extension of the massively parallel code AMITEX: non-periodic, GPU, coupling

Subject

The AMITEX code developed by CEA is a massively parallel code (distributed memory), using Discrete Fourier Transforms, for the numerical simulation of the mechanical behavior of heterogeneous materials. It overcomes the limitations (in size and computation time) encountered by standard finite-element codes used in the same context. A stabilized version of the code, available to the public at https://amitexfftp.github.io/AMITEX/, is used by various national (Mines Paris, ONERA, ENSTA Bretagne, I2M-ENSAM Bordeaux, Météo-France, etc.) and international (USA, UK, China, Canada, Germany, Finland, Poland, etc.) teams.

The aim of the post-doc, proposed over two years, is threefold: to extend the field of application of the AMITEX code to non-periodic boundary conditions, to explore a possible adaptation to hybrid CPU/GPU architectures, and to use these extensions to develop FFT-based multi-scale couplings. This objective is built around the 2decomp open source library, on which AMITEX is based, and whose development was taken over in 2022 (https://github.com/2decomp-fft/2decomp-fft)[1] by a French-English team. 

The various tasks of the post-doc consist of :

– extend the functionalities of the AMITEX code (non-periodic BC) by introducing different types of discrete transforms (sine, cosine, Fourier) within the 2decomp library,

– explore 2decomp‘s current development towards the use of hybrid CPU/GPU architectures, with the aim of setting up a first AMITEX-GPU code,

– use this new functionality for multi-scale coupling, where a local (refined) simulation interacts with a global (unrefined) simulation [3] via non-periodic boundary conditions,

[1] Rolfo, S.; Flageul, C.; Bartholomew, P.; Spiga, F. & Laizet, S. The 2DECOMP&FFT library: an update with new CPU/GPU capabilities, Journal of Open Source Software, The Open Journal, 2023, 8, 5813

[2] Gélébart L., FFT-based simulations of heterogeneous conducting materials with combined nonuniform Neumann, Periodic and Dirichlet boundary conditions, Eur. Jour. Mech./A solids, Vol. 105, 2024

[3] Noé Brice Nkoumbou Kaptchouang and Lionel Gélébart. Multiscale coupling of fft-based simulations with the ldc approach. Computer Methods in Applied Mechanics and Engineering, 3

Candidate and subject

– The candidate should have completed his/her thesis in the field of numerical mechanics and have a strong and practical interest for computer development, particularly through open source codes (2decomp and AMITEX),

– Although the subject is aimed at (numerical) solid mechanicians, it may also be suitable for (numerical) fluid mechanicians or physicians who wish to open up to solid mechanics,

– Part of the topic concerns extension to GPUs, so prior knowledge of GPU programming will be a plus. However, this point is not essential if the candidate demonstrates solid computer skills that will enable him or her to be trained quickly,

– Depending on the candidate’s professional project and/or initial skills, the part of the work on multi-scale coupling, which will enable the project to be promoted through scientific publications, could be strengthened and/or extended to other types of coupling, and especially multi-physics couplings.

Details

The post-doc, based at CEA Saclay and granted for 2 years, will draw on the skills of L. Gélébart (DES/ISAS/DRMP/SRMA), developer of the AMITEX code, Y. Wang, HPC simulation specialist at the Maison de la Simulation (DRF) and Cédric Flageul (co-developer of the 2decomp library) from the University of Poitiers.

Contacts 

lionel.gelebart@cea.fr

yushan.wang@cea.fr

cedric.flageul@univ-poitiers.fr

Categories
seminaire passé seminar

[Seminar] October 24 2023 – Adéquation algorithme architecture pour l’accélération de méthodes d’inversion de données en grande dimension 🧑‍🏫 Nicolas GAC

🧑‍🏫 Nicolas Gac
🌎 Oct 24 2023
☕️ 10:00 AM
🏢 Maison de la Simulation, Batiment Digiteo Saclay, Salle Mandelbrot
🔗 slides

Résumé :

L’amélioration constante de la résolution des instruments parallèlement à la complexité croissante des méthodes de reconstruction basées sur des modèles de plus en plus précis, s’accompagne d’un besoin croissant en puissance de calcul. Les cartes accélératrices composées de GPU ou de FPGA sont une opportunité pour réduire l’écart technologique entre les systèmes d’acquisition et de reconstruction. Dans le contexte particulier de la résolution de problèmes inverses mal posés, mes travaux de recherche en adéquation algorithme-architecture visent à prendre en compte, en amont de la définition des méthodes, le potentiel et les limites des architectures d’accélération. Après une présentation du parallélisme offert par les architectures GPU et FPGA, le contexte algorithmique des méthodes bayésiennes et leur application en reconstruction tomographique seront présentés avec un focus sur l’accélération des opérateurs de projection/rétrojection utilisés en tomographie. Le projet ANR Dark-era portant sur l’accélération des calculs pour la radioastronomie sera ensuite présenté ; ce travail collaboratif vise à construire un outil de prototypage rapide fournissant des simulations exascales des futurs serveurs HPC nécessaires au traitement « temps réel » du flux de données massives du radiotélescope SKA. Enfin, des perspectives sur ces travaux seront exposées.

Categories
member

Members

Director

Pascal TREMBLIN (CEA research director)

Executive assistant

Valérie BELLE

Permanent members

Science by Computing Team
  • Team Leader:
    Charles PROUVEUR (CNRS research engineer)
  • Edouard AUDIT (CEA research director)
  • Jean-Michel BATTO (CEA research director)
  • Arturo CONSOLI (UVSQ associate professor)
  • Mathieu LOBET (CEA research scientist)
  • Juan Jose SILVA CUEVAS (CNRS research engineer)
  • Riccardo SPEZIA (CNRS senior research scientist)
  • Yves VANDENBROUCK (CEA research director)
  • Yushan WANG (CEA research scientist)
Science of Computing Team
  • Team Leader:
    Julien BIGOT (CEA research scientist)
  • Victor ALESSANDRINI (CNRS research scientist emeritus)
  • Yuuichi ASAHI (CEA research scientist)
  • Simplice DONFACK (CNRS research engineer)
  • Thomas DUFAUD (UVSQ associate professor)
  • Nahid EMAD (UVSQ full professor)
  • Samuel KOKH (CEA research director)
  • Martial MANCIP (CNRS research engineer)
  • Benoît MARTIN (CEA research scientist)
  • Thomas PADIOLEAU (CEA research scientist)
Coordination Team
  • Team Leader:
    Christophe CALVIN (CEA research director)
  • France BOILLOD-CERNEUX (CEA research scientist)
  • Valérie BRENNER (CEA research director)
  • Julien THELOT (CEA permanent staff)

Fixed-term members

Postdocs
  • Paul REGNAULT
  • Simon EL-OUAFA
Engineers
  • Julian AURIAC
  • Thomas BOUVIER
  • Paul GANNAY
  • Sylvain JOUBE
  • Hariprasad KANNAN
  • Benoît MALEZIEUX
  • Jacques MORICE
  • Trévis MORVANY
  • Sage OSBORNE
  • Florian SABY
  • Adrien TABERNER
CDD
  • Guigone CAMUS
PhD students
  • Thierry ANTOUN
  • Ester El KHOURY
  • Melissa LARBI
  • Jean-Marc LUDE
  • Aymeric MILLAN
  • François-Xavier MORDANT
  • Petro VOLOSHYN
Trainees
  • Zina ASOYAN
  • Célia IOULAIN
  • Fatoumata Sira SIDIBE

Former members